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Abstract. The problem of the existence of bound states outside the continuum of the bands
due to the presence of a nonlinear impurity is studied within a two-band tight-binding model in
one dimension. The nonlinear impurity deviates from the ordinary sites by an on-site energy of
the formχ(|ψ0|2)β/2, where|ψ0|2 is the probability of finding the particle at the impurity site,
χ is referred to as the strength andβ is the nonlinearity of the impurity. Forβ > 2, there exist
threshold values forχ below which there is no bound state. For 0< β 6 2, there is always
one bound state above the upper band forχ > 0; and two bound states, one with energy inside
the band gap and another below the lower band, forχ < 0. Forβ < 0, there is always a bound
state above (below) the upper (lower) band forχ > 0 (χ < 0). For |β| < 2/3 (β < 0), there is
always a state inside the gap; while for|β| > 2/3, there exists an upper bound for|χ | above
which no bound states are found inside the gap.

1. Introduction

Recently, there has been much interest in studying phenomena in which nonlinearity and
disorder are present simultaneously [1]. One class of studies looked into the spreading of
a wave packet in a system with nonlinear impurities, and the transmission of an incident
wave through a segment with nonlinear impurities [2, 3]. These nonlinear impurities have
the property that their strength is proportional to the probability of finding the particle at the
impurity site, i.e., the projection of the wavefunction onto the impurity site. Very different
diffusion and transmission behaviours, e.g., self-trapping, have been found as a result of
the presence of nonlinear impurities [4]. This problem, in general, is related to the more
difficult problem of solving a nonlinear Schrödinger equation [3].

A related problem with very interesting results is that of the existence of bound states
outside the band continuum in the presence of nonlinear impurities. The classic problem
of the effects of a single linear impurity in an otherwise ordered solid has been treated in
detail by Koster and Slater [5]. For a linear impurity within a one-band model, it was found
that a bound state is formed in one dimension (1D) and two dimensions (2D) regardless
of the strength of the impurity, and a threshold exists for the strength of the impurity for
the existence of a bound state in three dimensions (3D) [5–7]. Recently, similar problems
have been studied for a single nonlinear impurity in one-band tight-binding models [8–11].
It was found that nonlinearity leads to qualitatively different results. There may exist a
threshold below which there is no bound state and above which there are two bound states.

In the present work, we study in detail the problems of the existence of bound states in
a two-bandmodel in 1D. In particular, a diatomic linear chain model is used. In contrast
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to the case for one-band models, which have no band gap, we can consider the impurity
levels within the band gap. The presence of states in the band gap depends on where the
impurity is located, i.e., at which site of a diatomic chain, and on the sign of the strength of
the impurity. The interplay between the strength and the nonlinearity provides a very rich
behaviour regarding the existence of bound states.

As in the diffusion and transmission problems, in which such phenomena as self-trapping
are studied. the nonlinearity may be due to many-body effects in solids, e.g., the polarization
due to localized electron. Nonlinearity may also be introduced by doping of materials with
foreign species with nonlinear properties. The dependence of the strength of an impurity
on the probability of finding the particle at the impurity site can also be regarded as an
approximation for treating, to a certain degree, on-site repulsion effects. The present problem
can be readily generalized to that of electromagnetic wave propagation in inhomogeneous
nonlinear media; the corresponding ordered systems in this case are usually referred to as
photonic band-gap materials.

The plan of the paper is as follows. In section 2, the formalism of the problem is
presented and results for a linear impurity in a two-band model are briefly reviewed. In
section 3, we present results for a nonlinear impurity, with particular attention being paid
to the effects of the sign of the strength of the impurity and that of the nonlinearity. In
section 4, we summarize the results and discuss possible generalizations of the present
problem.

2. Formalism

Consider two types of site arranged alternately on a linear chain. The even- (odd-) numbered
sites are occupied by type-A (type-B) atoms with on-site energy+ε (−ε). For simplicity,
we consider interactions only between nearest neighbours. The Hamiltonian of the ordered
chain can be written as

H0 = ε
∑

n

(|2n〉〈2n| − |2n + 1〉〈2n + 1|) + V
∑

n

(|2n〉〈2n + 1| + |2n〉〈2n − 1| + HC) (1)

whereV is the hopping integral between neighbouring Wannier orbitals|n〉. The spacing
between neighbouring atoms is assumed to bea and hence the lattice constant is 2a. The
Bloch sums associated with the type-A and type-B sites can be constructed as

|φA(k)〉 = 1√
N

∑
n

eik2na|2n〉 |φB(k)〉 = 1√
N

∑
n

eik(2n+1)a|2n + 1〉 (2)

whereN is the number of unit cells. The Schrödinger equationH0|ψk〉 = E(k)|ψk〉 can be
solved by writing|ψk〉 as a linear combination of the Bloch sums:

|ψk〉 = αA|φA(k)〉 + αB |φB(k)〉. (3)

Substituting into the Schrödinger equation gives a 2× 2 matrix with eachk in the first
Brillouin zone. The corresponding eigenvalues give the band structure

E(k) = ±
√

ε2 + (2V coska)2. (4)

The band gap is given by 2ε and the band width of each band is
√

ε2 + 4V 2 − ε. Note that
if we set ε = 0, the model reduces to a one-band model with lattice constanta and band
width 4V . Another case worth studying, which also leads to a two-band situation, is the
use of a chain of one type of site with two orbitals per site.



Effects of a nonlinear impurity in a diatomic chain 2013

The Green’s function corresponding toH0 can be found exactly. In particular, the
matrix elements connecting Wannier orbitals on type-A sites are given by

G
(0)

2n,2m(z) ≡ 〈2n|G(0)|2m〉 = −
(

z + ε

2π iV 2

) ∮
dw

w|n−m|

w2 − 2wx + 1
(5)

wherez is an energy parameter and the integral is over a unit circle and

x = 1

2V 2
(z2 − ε2 − 2V 2). (6)

Since we are primarily interested in the existence of bound states outside the band continuum
due to the presence of an impurity, we focus on the Green’s function withz above (below)
the top (bottom) of the upper (lower) band and inside the band gap. The on-site matrix
element at, say, the origin can be evaluated by carrying out a contour integration:

G
(0)

00 (z) =


z + ε

2V 2
√

x2 − 1
for |z| >

√
ε2 + 4V 2

− z + ε

2V 2
√

x2 − 1
for |z| < ε.

(7)

Note thatG(0)

00 (z) is positive forz above the top of the upper band and is negative forz

within the band gap and below the bottom of the lower band.

Figure 1. The dependence of the bound-state energies
as a function of the linear impurity (β = 0) strength.
For χ > 0, there is always a bound state above the
top of the upper band. Forχ < 0, there are always two
bound states with one inside the gap and the other below
the bottom of the lower band. The shaded regions are
the band continua. The on-site energy is chosen to be
ε = 1 and the hopping integralV = 0.5.

Consider a nonlinear impurity at a type-A site. Without loss of generality, we assume
that the impurity is placed at the origin. The impurity is assumed to lead to a perturbation
term in the Hamiltonian of the form

H1 = χ(|ψ0|2)β/2|0〉〈0| (8)

where|ψ0|2 = |〈0|ψk〉|2 is the probability of finding the particle at the impurity site,χ is
referred to as the strength of the impurity andβ the nonlinearity. Since|ψ0|2 < 1, by the
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normalization of the wavefunction, the factor(|ψ0|2)β/2 acts as a reduction factor toχ for
β > 0 and as an enhancement factor forβ < 0. With this form ofH1, the site at the origin
has an on-site energyε + χ(|ψ0|2)β/2, i.e., a nonlinear term added to the original on-site
energy. Note thatχ can either be positive or negative.

The matrix elements of the perturbed Green’s functionG corresponding to the total
HamiltonianH = H0 + H1 can be expressed exactly as

Gmn = G(0)
mn + G

(0)

m0T00G
(0)

0n (9)

where thet-matrix T00 is

T00 = χ(|ψ0|2)β/2

1 − χ(|ψ0|2)β/2G
(0)

00

(10)

with G
(0)

00 given by equation (7) andGmn ≡ 〈m|G|n〉. It is our aim to investigate the
interplay betweenε andβ as regards the existence of bound states outside the continuum
of the band.

The poles of the perturbed Green’s functionG give the energies of the bound states.
SinceG(0)

mn has poles (branch cut) only within the bands, it is sufficient to solve for the
energieszb corresponding to the poles ofT00, i.e.,

1 − χ(|ψ0|2)β/2G
(0)

00 (zb) = 0. (11)

However, the factor|ψ0|2 depends also onzb, as it is known only afterG is solved. Using
a standard relation betweenG and |ψ0|2, and equation (9) forG, |ψ0|2 can be written in
terms of the unperturbed Green’s function as [6]

|ψ0|2 = − [G(0)

00 (zb)]2

[G(0)′
00 (z)]z=zb

(12)

where the denominator is the derivative ofG
(0)

00 (z) with respect toz evaluated atz = zb.
Equations (11) and (12) form a set of equations to be solved simultaneously for the bound-
state energies.

For comparison with results for a nonlinear impurity, it is useful to discuss briefly the
case of a linear impurity (i.e.,β = 0). In this case, it is then sufficient to solve equation (11)
alone withG

(0)

00 given by equation (7). Figure 1 shows the energies of the bound states
as functions of the impurity strengthχ . For χ > 0, there is always one bound state with
energy above the top of the upper band. Forχ < 0, there are always two bound states, one
inside the gap and another below the bottom of the lower band. This behaviour is closely
related to our choice of+ε on-site energy at type-A sites. If the linear impurity is placed
at a type-B site, say site 1, then the role ofG

(0)

00 in equation (11) is taken byG(0)

11 . In this
case, we have one bound state below the bottom of the lower band forχ < 0, and two
bound staes forχ > 0.

3. Results

3.1. β > 0

For χ > 0, bound states appear above the top of the upper band. Using equation (7) for
G

(0)

00 and equations (11) and (12),zb satisfies the equation

1

χ
= (zb + ε)

[
z2
b − ε2 − 4εV 2

zb + ε

]−β/2

[(z2
b − ε2)(z2

b − ε2 − 4V 2)](β−2)/4. (13)
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Figure 2. The behaviour of the bound states on theχ–β plane withχ > 0 andβ > 0. When
β < 2, there is always one bound state above the top of the upper band. Whenβ > 2, there
exists a threshold value ofχ below which there are no bound states. Above the threshold,
there are two bound states above the top of the upper band. The parameters are the same as in
figure 1.

Figure 3. The dependence of the energies of the bound states on the strength|χ | in the cases of
(a) β = 3 and (b)β = 1. The upper portions of the figures correspond toχ > 0. For (a)β > 2,
two bound states can be found above the top of the upper band whenχ is above the threshold.
For (b)β < 2, there is always one bound state regardless of the value ofχ . The lower portions
of the figures correspond toχ < 0. For (a)β > 2, a maximum of four bound states, two of
which are inside the gap and the other two of which are below the bottom of the lower band,
can be found if|χ | is large enough. For (b)β < 2, there are always two bound states, with one
inside the gap and one below the bottom of the lower band. The parameters are the same as in
figure 1.

It is immediately clear thatβ < 2 andβ > 2 represent two qualitatively different situations.
For β < 2, the right-hand side (RHS) of equation (13), as a function ofzb, diverges as
zb approaches the band edge (i.e., aszb → √

ε2 + 4V 2) and monotonically decreases to
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zero aszb → ∞. Hence for givenχ andβ less than two, there is always one solution for
zb. For β > 2, however, the RHS of equation (13) vanishes both at the band edge and as
zb → ∞. Hence for givenβ, there exists a thresholdχmin below which there is no bound
state. Forχ > χmin, there are two bound states. Figure 2 shows the corresponding regions
of different behaviour on theχ–β plane for the case whereχ > 0. These results are similar
to those in one-band models [9]. The upper portion of figure 3 shows the dependence of
the energies of the two bound states on the strengthχ (χ > 0) for β = 1 andβ = 3. For
β > 2, the energy of one of the bound states decreases towards the top band edge of the
upper band and that of the other increases asχ increases.

Figure 4. The dependence of|χ |(1)
min and |χ |(2)

min on β with β > 0 andχ < 0. Forβ > 2, there

exists a threshold|χ |(2)
min above which there are two bound states. As|χ | increases further until

|χ | > |χ |(1)
min, four bound states are found, with two inside the gap and the other two below the

bottom of the lower band. Forβ < 2, two states are found with one inside the gap and the
other below the bottom of the lower band. On the dashed line, there are three bound states.

For χ < 0, bound states, if they exist, appear inside the gap and below the bottom of the
lower band. Forzb below the bottom of the lower band, it again satisfies equation (13). This
leads to similar behaviour regarding the existence of a threshold,|χ |(1)

min, for the presence
of bound states forβ > 2. For the bound state inside the band gap,zb satisfies the equation

1

|χ | = (zb + ε)

[
ε2 − z2

b + 4εV 2

zb + ε

]−β/2

[(ε2 − z2
b)(ε

2 − z2
b + 4V 2)](β−2)/4. (14)

Again, for β > 2, there exists a threshold,|χ |(2)
min, above which there are two bound states.

Figure 3 also shows the dependence of the bound-state energies onχ for χ < 0. We note
that for some values of|χ | there are four bound states, two in the gap and two below the
bottom of the lower band. The bound states in the gap lie closer to the upper band. As|χ |
increases, one of them shifts towards the lower band edge of the upper band and the other
shifts towards the upper band edge of the lower band. Figure 4 gives the dependence of
|χ |(1)

min and |χ |(2)
min on β and shows the regions of different behaviour on the|χ |–β plane.

3.2. β < 0

In a two-band model for an arbitrary value of|β| (β < 0), there is always one bound state
above (below) the top (bottom) of the upper (lower) band for positive (negative) values of
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Figure 5. The behaviour of the existence of bound states within the gap on the|χ |–|β| plane
for β < 0 andχ < 0. For |β| < 2/3, there is always one bound state within the gap. However,
for |β| > 2/3, there is an upper bound for the impurity strength,|χ |max , above which there is
no bound state within the gap. However, if|χ | is below the threshold, two bound states can be
found within the gap. On the dashed line, there is no bound state.

Figure 6. The dependence of the bound-state energies on|χ | (χ < 0) with β < 0. (a) For
|β| > 2/3, there exists an upper bound|χ |max above which no bound states can be found within
the gap. However, when|χ | < |χ |max , two bound states can be found. (b) The situation is
different for (b) |β| < 2/3, where one bound state can always be found within the gap.

χ . This behaviour is similar to that of alinear impurity and of a one-band model with
negative nonlinearity. However, the states within the band gap which appear whenχ < 0
behave differently. The energy of the bound state within the gap satisfies equation (14).
Figure 5 shows the regions corresponding to different behaviour regarding the existence
of bound states within the gap on the|χ |–|β| plane. For|β| < 2/3, there is always one
bound state within the gap regardless of the magnitude of the strength|χ |. However, for
|β| > 2/3, there exists an upper bound for the strength|χ |max , which depends on|β|, above
which there is no bound state within the gap. For|β| > 2/3 and |χ | < |χ |max , there are
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two bound states. The bound-state energies are shown in figure 6 for two different values
of |β|.

Such a result becomes clear when we consider the behaviour of the RHS of equation (14)
as a function ofzb. As zb approaches the bottom of the upper band, i.e.,zb → +ε, the
RHS of equation (14) diverges for arbitrary value of|β|. As zb approaches the top of the
lower band, the RHS of equation (14) behaves as(zb + ε)(2−3|β|)/4, which goes to zero for
|β| < 2/3 and diverges for|β| > 2/3. Hence for|β| > 2/3, the RHS of equation (14)
diverges at both edges forming the gap and thus imposes a|χ |max above which there is no
bound state.

3.3. Nonlinear impurity on type-B sites

We have considered in detail the effects of a nonlinear impurity on type-A sites. A similar
treatment can be applied to an impurity located on type-B sites. Since the results are
similar, we only discuss the major difference. In this case, we replaceG

(0)

00 in equation (11)
by G

(0)

11 (z), which is the on-site matrix element of the unperturbed Green’s function at site
1 and is given by

G
(0)

11 =


z − ε

2V 2
√

x2 − 1
for|z| >

√
ε2 + 4V 2E

− z − ε

2V 2
√

x2 − 1
for |z| < ε

(15)

wherex is defined by equation (6). The difference when placing an impurity on a type-B
site is that forχ < 0, bound states appear only with energiesbelowthe bottom of the lower
band; while forχ > 0, bound states appear in the band gap and above the top of the upper
band. Other than this, the existence of the bound states for different values ofβ andχ is
qualitatively similar to the behaviour discussed above.

4. Discussion

In summary, we have studied in detail the problem of the existence of bound states in a
two-band tight-binding model in 1D. Forβ > 2, there exist threshold values for the strength
of the impurity for the presence of bound states outside the continuum of the bands. For
0 < β < 2, there are always bound states regardless of the strength of the impurity. For
negativeβ and|β| > 2/3, there exists an upper bound,|χ |max , on the strength above which
there is no bound state with energies inside the band gap.

Our work focused on the dependence of the bound-state energies on the strengthχ

and nonlinearityβ of the impurity. It is equally interesting to look at the wavefunction
associated with these bound states. Basically, they are localized around the impurity sites
but the width of the wavefunction depends sensitively onχ andβ and becomes quite widely
spread when the bound-state energies approach one of the band edges. When extended to
include many impurities, the interesting question becomes that of localization in a random
chain with nonlinear impurities which has recently attracted much attention [2].

We conclude with a discussion on possible generalizations of the present work. A system
of current interest is that of photonic band-gap (PBG) materials, which are basically periodic
dielectric materials [12–14]. The dispersion relation for electromagnetic wave propagation
in these PBG materials exhibits bands of allowed modes and forbidden frequency ranges
with no propagating modes, analogous to bands and band gaps in electronic systems. These
dispersion relations can be fitted to standard tight-binding form in order to establish an
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empirical tight-binding treatment for photonic bands [15]. Theoretically, this tight-binding
description of photonic bands can be viewed as a result of overlaps of neighbouring localized
Wannier orbitals associated with the sites on a lattice [16, 17]. These Wannier functions can
be formed by linearly combining Bloch functions. If a single band or a pair of bands is of
particular interest, then a one-band or two-band tight-binding model suffices to capture the
basic essential features. Our formalism in treating impurities, linear and nonlinear, can then
be applied to these PBG materials [16, 17]. In this case, a nonlinear impurity may represent
the substitution at one site for the periodic dielectric material of another material with
nonlinear optical properties. Experimentally, impurity levels have been observed within the
photonic band gaps in intentionally doped PBG materials [18]. Our results indicate that
one can control the position of the impurity levels by tuning the strength of the impurity.
These doped PBG materials have potential applications in the design of novel optoelectronic
devices such as lasers, resonators, and frequency filters. Impurity levels are sometimes
useful in the operation of some of these devices. For example, doped PBG materials can be
used to provide high-Q electromagnetic cavities. It should be pointed out that a complete
treatment of the PBG problem should take into account the vectorial nature of EM fields.
Qualitatively, a scalar wave approximation may be used to estimate the effects of nonlinear
impurities. Note that even within the scalar wave approximation, the form of the wave
equation is different from that of the Schrödinger equation, and hence slightly different
results from those reported here will be obtained [19].

Our problem can naturally be extended to higher spatial dimensions. However, in
higher dimensions we do not expect different behaviour forβ < 2 andβ > 2 as this merely
comes from the special form of the Green’s function in 1D which, in turn, is a result of the
tight-binding energy band and thek-space integration in obtaining the Green’s function. The
formalism presented here for the single-impurity problem can be extended to treat an infinite
number of impurities, which is equivalent to an alloy problem. The standard methods [20]
such as the averaget-matrix approximation and the coherent-potential approximation can
be used to deal with this alloy problem, with the former being good in the limit of dilute
concentration of nonlinear impurities.
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